
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

12

An Efficient Methodology for the Evaluations of Select

Operation in Query Optimization

Syed Naimatullah Hussain

Taif University,KSA

Sultan Aljahdali
Taif University,KSA

Ashfaq Ahmed K
Taif University,KSA

ABSTRACT

The advancement of 4th Generation Languages (4GLs)

brought the mutiny in the Information technology by making

users free from the burden of developing logic for solution of

the application problem. At the same time, it enhanced the

need for implementation of ameliorated strategies to evaluate

the intermediate operations. The development of 4GLs freed

the users from the strained design of ‘how to do it’ for

solutions of their applications. At the back end, it increased

the complexity of transformation from non-procedural query

to procedural query. The query processing and optimization

manages these transformations, by transforming 4GLs query

into appropriate relational algebra/calculus expression in the

first phase, minimizing the operations in the next phase and

then evaluating the expression through the efficient strategies

for such operations in the third phase. The transformation to

relational algebra/calculus expression and minimizing

operations are straightforward processes. The development of

ameliorated strategies depends on the file organizations used

in the storing relations of the database (Secondary storage

structures). This paper discusses the strategies designed for

select operation, when tuples of operand relations are stored in

one of various file organizations in the database. Here, an

attempt is made to design ameliorated algorithms to evaluate

select operation when the tuples of the operand relations are

stored in any of the file organizations like (i) sequential file

(ii) indexed sequential files with B-tree file having number of

key field indexes in each node and B+ tree file organizations

for multiple indexes where data pointers are stored in each

leaf node of the multilevel indexes of the file organization.

The literature available suggests that, there are good methods

available when key fields are primary keys. The authors have

not noticed any clear cut strategies, when key fields for

indexing are non primary keys (non candidate keys). Here, an

attempt is made to develop the strategies, when key fields are

non-candidate keys.

General Terms

Tuples, Algebra/Calculus, Algorithms, Sequential file and

Indexed Sequential files

Keywords

4GL 4th Generation Languages, RA regular expression, B

Trees and B+ Trees

1. INTRODUCTION
The development of 4th generation languages paved the way

for abstracting needful information, through only referencing

the needs without bothering about the hassles of how to

procure it. The efficiency of the query evaluation depends on

minimization of number of operations and memory

requirements [2, 3]. The query requirement may spread over

wide range of concatenation of these operations to be

performed on operand relations in any ordering sequence. The

efficiency of such query evaluation can be obtained in two

different phases. Initially, first by developing a methodology

to sequence the operations to minimize the memory space

utilization and number of I/O operations. The query

processing can be done in three phases i.e. translation of the

4GL query into relational algebra/calculus expression,

transforming it into bare minimum number of operations with

minimal memory and then evaluating the expression using an

ameliorated strategy.

The figure 1 in the following depicts the flow diagram,

describing different phases of the query evaluation [5, 6].

 Conversions of 4GL query into relation algebra

(RA) expression.

The expression:

 SELECT attributes

 FROM tables

 WHERE predicate

can be directly converted into RA expression as

 attributes (p (r1’x r2 x….x rm)

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

13

Fig 1: Query evaluation phases.

This can be obtained by performing the following steps:

1. Form cross product corresponding to the relations

FROM CLAUSE.

2. Predicate corresponding to the WHERE clause will

be the predicate P for SELECT operation.

3. Attributes in SELECT clause correspond to

attributes of PROJECT clause.

 The first phase is straight forward process, the second phase

depends on structure and length of records present in operand

relations and the last phase needs the design of ameliorated

strategies for each operation along with more ameliorated

methodology for each sequencing these strategies.

A query expression may involve number of operations [5, 6]

(mathematical as well as relational). Out of these operations,

the operations <select, project, join, intersection & difference

> make an expression relationally complete. Thus, the major

role in the query evaluation is to develop the optimal

techniques for the third phase concentrating only on the above

said five operations i.e. the major task in query evaluation is

to design ameliorated strategies with minimizing memory

requirements and I/O operations for these individual

relationally complete operations and interleaving them

through an efficient methodology for the evaluation.

Our project of developing a natural query language involves

the design of ameliorated strategies for the evaluation of

relational algebra/calculus operations i.e. unraveling the black

box shown in the figure 1. This paper discuses the design of

strategies for the evaluation of select operation. Here, we

have considered the database comprising of number of data

files with same or different file organizations and with

constraints specified in the predicate P.

2. SEQUENTIAL FILE
The operand relation of select operation may have been stored

in any of the file organizations like sequential, B-tree or B+

tree etc. within the database [3,4]. The operand relation stored

in sequential file comprises of n records / tuples (cardinality)

stored in increasing / lexicographical order of key field values.

The predicate P contains

field name (rel.op.) value

The typical select operation is of the type:

R1: = fieldname (rel.op.)value (R)

where rel.op. { <,<=,=,,>,>=}

Here, the tuples {records) of operand relation R are selected,

base on the satisfaction of the predicate conditions.

An attempt is made to develop an effective strategy through

the following algorithm.

Algorithm (seqential.selection)

/* P field (rel.op.) value. rel.op. is one of the { <, <= ,=, ,

>, >=}operators R is operand relation. ri is the ith tuples of

R, n is the cardinality of R. ‘a’ is the field name specified in

the predicate P and R1 is the result operand relation.

Read P

Begin

while {i<n) do

{Read R.ri

{If rel.op { <, < = } then

 { if ri.a. {rel.op} value

 R1 {R1} U ri ; i i + 1

Else i n + 1}}

else { if rel.op { >, >= } then

{ if ri.a (<=, <) value

ii+1

 else R1 R1 U {ri} ; i i + 1}}

 else {if relop { = }

 {if ri.a. < value; i i + 1

else if ri.a. = value

 R1 {R1} U ri

else i {n+1}}

else {{ if ri.a .(not =) value

Simple

conversion

rules

,,,,

Relationally

complete set

File structures

of operand

relations

Query in 4GL
Evaluation

methodology

Convert

regular

expression

Optimized

expression

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

14

 R1 {R1} U ri ; i i + 1

else i i+1}

end (while)

Here, the average access of records from sequential file is of

O(n/2). The output operation of selected records remains the

same for a specified file type. The optimality is unaffected by

this. So it is not accounted in computing the efficiency.

3. B-TREE
The database may contain different types of data files [2, 3].

One of the file types may by indexed sequential file with

index stored in B-tree file. The B-tree structure of index may

be of the type as explained below. Here, B-tree is balanced

tree with all leaf nodes are at the same level. A node of the

B-tree of order P contains:

P

1

K

1

P

r

1

P

2

K

2

P

r

2

…

.

P

i

K

i

P

ri

…

.

P

q -

1

K

q

-

1

P

rq

-1

P

q

Fig 2: XXXXXXXXX

 K1 < K2 < ….. < Ki < … Kq-1 < Kq are key field

values of the records.

 P1, P2 ….. Pq, q < p are tree pointers i.e. they contain

the addresses of sub trees containing index for x : ki < x

< Ki+1 i [1,q]; The sub tree pointed by P1 contains

index for key field values X < K1 and similarly for Pq X

> Kq.

 Pr1, Pr2, ….. Prq-1 are data pointers i.e. each contain the

address of the beginning of the block of records whose

last record is with key field value pointed out in the

corresponding index.

 Key field value of one record in each block has an

entry in the index of B-tree.

 The number of indexes q in each node is restricted by 2 <

q < p for root node and ceil (p/2) < q < p for other

nodes.

When the operand relation records are stored in B-tree file

organization, an attempt is made to design the ameliorated

strategy through the following algorithm. The predicate p is of

the type key field (rel.op:) value and rel.op may be one of {<,

< =, , >, > = } operators. The records of tree sites in the

equation order of key field values. ri is the ith record in the

operand relation R. The predicate referenced in the key field

need not be primary key. n is the cardinality of the relation.

3.1 Algorithm (B-tree selection)

/* The order of B-tree is p, q is the number of tree pointers in

the node at the jth level [4, 7].

Pij is the tree pointer to ith index at jth level. Prij is the data

pointer pointing to the block of records

Brij for the ith index value at jth level R1 is the result operand

relation.

i is the position of the node in a level

Brij is the block pointed by Prij*/

i = 1; j = 1

while (i < q and Pij = null)

{If relope { <, < = } and

Kij (relop) value or i = 1

{R1 {R1} U Brij; j j+1

return}

if Kij = value

 { ru}

 for u = 1 to n

 { R1} U ru until ru.a (relop) value }

{if relop {>, >=}and Kij < value

 { i = i+1 until Kij> value

 j j +1; return}

if Kij > = value

{{ru}

 for u = 1 to n

 u u + 1 until ru.a > = value

 R1

 j j + 1 until i=q, Pij = null

{If relop

 If {Kij < value i i+1 return }

 j j+1

 else { if Kij = value

{ru} Brij

 for u = 1 to n

 if ru .a = value

 R1 {R1} U{ru} until

 ru.a value}

{IF relop { } and

 if Kij<value

 R1 {R1} U {Brij};

i i+1 ; j j+1 until Kij > value

 {ru} Brij

 for u = 1 to n

 R1 {R1} U ru until ru.a. < value

 u u + 1 until (ru.a) .value

 R1 {R1} U ru

 R1 {R1} U Bij, until i = q and Pij = null }

Here, the number of I/O accesses is of the order O (1/2 log p

n).

4. B+ TREE
The operand relation might also be stored in B+ tree

multilevel dynamic index and can be implemented [1, 4]. The

data pointers for key field values appear only at leaf nodes.

The internal node of B+ tree is of the type.

P1 K1 P2 K2 … Pi Ki … Kq-1 Pq

and the leaf node of B+ tree is of the type

K

1

Pr

1

K

2

Pr

2

… Ki

P

ri
… Kq-1 Prq-1 Pnext

Fig 3: The nodes of B- tree.

 The order of B+ tree is p the value of q is 2 < q < p for

root node, ceil (p/2) < q < p for internal nodes and root

node.

 K1 < K2 < ….. < Kq are index field values.P1, P2 …..

Pq, q <= p are tree pointers those exists only in the

internal nodes.

 Pr1 Pr2 …. Prq-1 are data pointers existing in leaf nodes

those are the addresses of beginning of memory blocks

containing the specified field value at the last record of

the block.

 Pnext points to the next leaf node.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.7, May 2013

15

4.1 Algorithm (B+ tree select)
Read P

While (i<=q; j =j last

{

 if rel.op { <,<=} then

 for i = 1 to q

 for j = j to jlast –1

 if Kij(rel.op.) value

 j = j + 1

 R1 {R1} U Bij

 else

 for i = i+1 to q

 for j = j to jlast –1

 {ru} Bij

 R1 {R1} U ru until ru .a > value

 j to jlast +1; i q+1 }

{ if rel.op { = } then

for i = 1 to q

 for j = j to jlast –1

 if Kij <= value

 i=i+1; j=j+1 until j= jlast –1

 else {ru} Bij

 for u = i to n

 if ru .a < value

 u=u+1

 else if ru.a=value

 R1 {R1} U {ru};

 Pj Pnext until ru.avalue

 un+1}

{ if rel.op. {>} then

 for i = 1 to q

 for j = 1to jlast-1

 if Kij < value

i = i + 1; j = j + 1

 else

 jjlast

 {ru} Bij

 for u= 1= to n

 u=u+1 until ru.a>value

 R1 = { R1 }U ru

 u=u+1 until u=n

 PjPnext until Pnext=null}

{

if rel.op. {}then

for j =1to q

for j =1 to jlast-1

if Kij <> value

i = i + 1 j = j+1 until j =jlast

R1R1U { Bij}

 Else

 jjlast

 {ru} Bij

 if ru.a value

 R1 R1 U { ru }

 u u + 1 until u = n

Pj Pnext until Pnext= null

Here, the number of I/O accesses is of the order O (1/2 log p

n).

5. ACKNOWLEDGEMENT
I sincerely acknowledge to Dr Shivanand M Handigund for

his constant support and encouragement for successful

completion of this paper.

6. CONCLUSION
The strategies developed through the design of the three

algorithms are ameliorated strategies as these algorithms

minimized the input operations with

 accessing only the first block which contains mixed

records, both satisfying and not satisfying

conditions.

 avoiding the access of blocks which contains all the

records not satisfying the conditions

Thus, we have made attempts to develop efficient strategies.

This project also brought clues for the design of new efficient

data structures which is our current study

7. REFERENCES
[1] A paper entitled “Skew Handling Techniques in sort

merge join.” By Weifi-et- al, Oracle Corporation, ACM

SIGMOD, June 2002

[2] A Guide to the SQL Standard third edition C J Date with

Hugh Darwen Fundamentals of Database Systems by

Ramez Elmansri Shamkanth Navathe the

Benjamim/Cummings Publishing Company Inc.

Redword CA(USA)

[3] Ramakrishna and Gehrke “Database Management

System” third edition, Me-Graw Hill, 2003

[4] Goetz Graefe et al “query evaluation techniques for large

databases” ACM computing surveys, 24(1), 63-113,

march 1992.

[5] “Query Processing and Optimization “module 12 of

Database Management Systems Impact learning material

series prepared by Indian Institute of Technology,

Bombay.

[6] “SQL2 and Application Programming “Lecture series by

S. Seshadri Computer Science and Engineering IIT

Bombay.

